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Abstract

Investors demand higher premiums from firms whose future performance in R&D

is difficult to evaluate. We construct an R&D information quality (IQ) measure
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outcome (sales) and find statistically and economically significant evidence that ex-

pected excess returns decrease with R&D IQ. The high-minus-low R&D IQ hedge

portfolio earns excess returns of about −39 (−48) basis points per month in value-
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1. Introduction

As an essential component for gauging a firm’s competitive advantages, research and de-

velopment (R&D) information plays a critical role in guiding investors’ evaluations of a

firm’s future prospects. Numerous works have investigated whether a firm’s R&D infor-

mation is fully impounded in its stock prices (Chan, Lakonishok, and Sougiannis, 2001;

Eberhart, Maxwell, and Siddique, 2004; Li, 2011; Cohen, Diether, and Malloy, 2013).

However, relatively little attention has been paid to investors’ reactions to R&D informa-

tion quality. R&D information is difficult to evaluate because R&D is usually featured

with future-oriented long-term activities in science and technology, whose information

is hard to process and whose outcomes are difficult to predict. Moreover, the lack of

accounting disclosure suggests that investors may not be fully informed of all information

related to firms’ R&D activities, creating problems of asymmetric information (Aboody

and Lev, 2000). All of these facts make it critical to understand how investors resolve

uncertainties inherent in R&D from conceptualization to commercialization when making

investment decisions based on publicly available information.

In the theoretical camp, inconsistent predictions on how information quality/uncertainty

affects asset returns have been presented. Veronesi (2000) considers a pure exchange

economy with power utility preferences and shows that the equity risk premium increases

with information quality. However, Brevik and d’Addona (2010) introduce Epstein-Zin

recursive preferences into Veronesi’s model and find an opposite result. In a production-

based long-run risk model, Ai (2010) also finds that high information quality decreases

equity premiums. Furthermore, Epstein and Schneider (2008) present a model in which

ambiguity-averse agent follows a recursive multiple-priors utility and behaves as if he

maximizes expected utility every period under a worst-case belief that is chosen from a

set of conditional probabilities and show that investors require compensation for holding
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assets with low quality information. In this paper, we empirically explore the relation-

ship between R&D information quality and expected stock returns. We examine whether

investors demand higher risk premiums from firms whose future performance in R&D is

more difficult to evaluate and whether such behaviors affect firms’ future stock returns.

However, the measurement of R&D information quality is a delicate issue. Traditional

information quality measures such as firm size, firm age, analyst coverage, dispersion in

analyst forecasts, return volatility, and/or cash flow volatility (e.g., Zhang, 2006) may

not be appropriate in such a context. In this paper, we present a measure of R&D in-

formation quality (IQ) as how much variation of a firm’s fundamentals can be explained

by its R&D expenditures. More specifically, a firm’s R&D IQ is measured based on the

R-square generated from a regression of its sales growth on its realized R&D capital.

When constructing this measure of R&D IQ, we take into account the fact that different

firms may have different R&D lifespans and the fact that each year’s R&D expenditures

may have different effects on future sales growth. Using all firms listed on NYSE, AMEX,

and NASDAQ with valid accounting and returns data, we find that R&D IQ is gener-

ally persistent, as its one-year-apart persistence is as high as 0.57 (t = 32.9), and is not

correlated with other firm-specific variables (e.g., size, book-to-market, cash holdings,

return of assets, return of equity, and certain innovation-related variables). This suggests

that R&D IQ is distinct from well-known firm characteristics and contains different in-

formation and that the historical measure of R&D IQ is a good predictor of future R&D

information quality.

We hypothesize that when the firm’s past track record indicates low R&D information

quality (a small R-square), investors face a high degree of uncertainty in evaluating its

R&D information and are unwilling to make investments in its future R&D activities:

they would require high premiums to make such an investment. To test our hypothesis, we

conduct a portfolio analysis similar to Fama and French (1996). At the end of June of each
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year, we sort all firms into three R&D IQ portfolios (low, middle, and high) based on the

30th and 70th percentiles of R&D IQ in the previous year and construct a hedge portfolio

that longs the high IQ portfolio and shorts the low IQ portfolio. We hold these portfolios

over the next 12 months and compute their value/equal-weighted monthly returns. We

find that average excess portfolio returns decrease with R&D IQ. For example, the low

IQ portfolio earns 127 basis points (t = 4.23) per month in value-weighted returns and

126 basis points (t = 4.14) per month in equal-weighted returns, whereas the high IQ

portfolio earns only 78 basis points (t = 2.56) per month in value-weighted excess returns

and 88 basis points (t = 2.99) per month in equal-weighted excess returns. Furthermore,

the monthly return on the hedge portfolio is economically substantial and statistically

significant, yielding −48 basis points (t = −4.69) in value-weighted excess returns and

−39 basis points (t = −4.16) in equal-weighted excess returns. The same pattern also

holds for characteristic- and industry-adjusted returns.

The alphas of factor models also decrease with R&D IQ. More specifically, in the

Fama-French three-factor model (Fama and French, 1993), the alpha for the high-minus-

low IQ hedge portfolio is −40 basis points (t = −4.04) per month in value-weighted

excess returns and is −52 basis points (t = −4.73) per month in equal-weighted excess

returns. The pattern for the estimated alphas for the low, middle, and high IQ portfolios

and the hedge portfolio is the same in the Carhart four-factor model (Carhart, 1997). We

further investigate risk-adjusted returns using the recently developed q-factor (Hou, Xue,

and Zhang, 2015) and M -factor (Stambaugh and Yuan, 2016) models. Again, we find

that in both models the alphas for the hedge portfolio is economically substantial and

statistically significant in both value- and equal-weighted returns. These results suggest

that investors are less certain about the prospects of low IQ firms’ future R&D activities

and therefore require higher premiums when making such investments.

We further perform Fama-MacBeth cross-sectional regressions that allow us to con-
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trol for a large number of variables, including size, book-to-market, momentum, leverage,

idiosyncratic volatility, illiquidity, and innovation-related variables. Despite such exten-

sive controls, the coefficient on R&D IQ is always negative and statistically significant.

This finding provides further evidence in support of our hypothesis that expected excess

returns decrease with R&D IQ.

To examine whether high expected excess returns due to low R&D IQ are related

to firms’ fundamentals, we conduct Fama-MacBeth regressions of firms’ future operating

performance as measured by return on assets (ROA), cash flows (CF), and performance

(PM) on R&D IQ. Even after controlling standard variables in the regressions such as

size, book-to-market, leverage, idiosyncratic volatility, illiquidity, and certain innovation-

related variables, we find that for all three proxies of fundamentals, the coefficient on IQ

is insignificant, whereas coefficients on lagged fundamentals and changes in fundamentals

are significant. These findings indicate that our R&D IQ measure is not driven by the

undervaluation or overvaluation of fundamental information.

Our hypothesis is that investors are ambiguity-averse and require high premiums to

invest in firms with low R&D IQ. We therefore posit that the R&D IQ-return relationship

should be stronger for firms with higher information uncertainty, such as firms with

smaller market capitalization, younger firms, firms facing more financial constraints, and

firms with higher fundamental volatility. These firms may have more uncertain business

environments and investors are more ambiguous about their future prospects. To test

this hypothesis, we perform independent double sorts on R&D IQ and size, age, the KZ

index, and cash-flow uncertainty. We find that the high-minus-low IQ hedge portfolio

earns −76 (t = −2.91) basis points per month for firms with small size, whereas it earns

only −28 (t = −2.34) basis points per month for firms with large size. Alphas from

the Fama-French three-factor model, the Carhart four-factor model, the q-factor model,

and the M -factor model for the hedge portfolio are −99 (t = −3.02), −110 (t = −3.23),
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−121 (t = −3.31), and −107 (t = −2.82) basis points per month, respectively, for small

firms, whereas they become small and marginally significant, −24 (t = −1.94), −25

(t = −1.96), −30 (t = −2.25), and −25 (t = −1.88) basis points per month, respectively,

for large firms. Our tests on age, the KZ index, and cash-flow uncertainty present the

same implications.

To further explore the relationship between R&D IQ and future stock returns and to

examine whether the IQ effect reflects commonalities in returns that are not captured by

existing factors, we construct a factor-mimicking portfolio for R&D information quality

following the similar methodology used in Fama and French (1993). At the end of June of

each year, we sort firms independently into two groups based on size (small “S” and big

“B”) and into three IQ groups (low “L”, middle “M”, and high “H”). The intersection of

these portfolios forms six size-IQ portfolios (S/L, S/M, S/H, B/L, B/M, and B/H). The

IQ factor (IQF) is constructed as (S/L + B/L)/2 - (S/H + B/H)/2. We find that the IQF

is not highly correlated with commonly used factors such as the market factor (MKT),

the size factor (SMB), the value factor (HML), and the momentum factor (MOM). For

example, the monthly correlation between IQF and MKT is only about 3%; its monthly

correlations with SMB, HML, and MOM are 22%, -13%, and 19%, respectively. We also

find that IQF captures a different pricing factor that is distinct from the existing factors

through constructions of tangency portfolios. For example, adding IQF to the Fama-

French three factors improves the ex post Sharpe ratio of the tangency portfolio by 14%

with the weight on IQF being 42%, which is larger than weights on MKT (26%), SMB

(25%), and HML (7%).

Our study relates and contributes to two strands of literature. On the one hand,

many works have examined whether asset prices fully impound information contained

in the innovation process. Chan, Lakonishok, and Sougiannis (2001) find that R&D in-

tensity measured as R&D expenditures relative to the market value of equity has the
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ability to predict future returns. However, its predictability power disappears when the

ratio of R&D expenditures to sales is used. Eberhart, Maxwell, and Siddique (2004)

empirically report significantly positive long-term abnormal stock returns following un-

expected and economically significant increases in R&D and argue that R&D increases

are beneficial investments, but the market underreacts to this benefit. Li (2011) argues

that the positive relationship between R&D intensity and stock returns exists only in fi-

nancially constrained firms, and this relationship is robust to measures of R&D intensity.

Cohen, Diether, and Malloy (2013) demonstrate that firm-level innovation is persistent

and predictable, but the market appears to ignore the publicly available information in

R&D when valuing future innovation. Gu (2005) finds that changes in patent citations

relative to total assets are positively related with firm’s future earnings and stock returns.

Pandit, Wasley, and Zach (2011) show that firm’s patent citations positively associate

with its future operating performance. Hirsleifer, Hsu, and Li (2013, 2015) construct an

innovative efficiency (IE) measure and an innovative originality (IO) measure, respec-

tively, using the number of patents and patent citations of a firm and find that both IE

and IO positively predict the future stock returns. They mainly attribute this positive

IE/IO-return relationship to limited investor attention. However, unlike the above works,

our paper focuses on information quality/uncertainty related to the innovation process

by relating innovation input (R&D) and innovation outcome (sales).

On the other hand, how information quality/uncertainty affects asset returns has

attracted considerable attention. Veronesi (2000) finds that the equity risk premium

increases with information quality, whereas Brevik and d’Addona (2010) and Ai (2010)

find an opposite result. Chen and Epstein (2002) show in a theoretical model that excess

return should be composed of a risk premium and a premium for Knightian uncertainty

(ambiguity), and Epstein and Schneider (2008) make a further refinement and present a

model in which investors demand a premium for holding assets with low quality infor-
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mation. Zhang (2006) implements an empirical investigation on the relationship between

information uncertainty and stock returns. He finds that greater information uncertainty

leads to higher expected excess returns following good news but lower returns following

bad news. In this paper, we focus on this seemingly contentious issue using information

contained in a firm’s R&D activities and empirically investigate the relationship between

R&D information quality and future stock returns. We find robust empirical results that

expected excess returns contain a premium for R&D information quality and that the

higher information quality is, the smaller the future excess returns will be.

The rest of the paper is organized as follows. Section 2 introduces the data and pro-

vides summary statistics. Section 3 investigates R&D information quality and return

predictability using portfolio analysis and Fama-MacBeth cross-sectional analysis. Sec-

tion 4 implements several robustness checks. Section 5 provides further evidence on the

return predictability power of R&D information quality. Section 6 constructs a R&D

information quality factor. And Section 7 concludes the paper.

2. Data and Summary Statistics

In this section, we present the data used for empirical analysis and construct our measure

of R&D information quality by connecting innovation input (R&D) and innovation out-

come (sales) in Subsection 2.1, and report summary statistics of the R&D information

quality measure in Subsection 2.2.

2.1. Data and R&D Information Quality

The sample we use in this paper combines different data sources and covers the period

ranging from July of 1980 to July of 2012. We obtain firm-specific accounting data such as

R&D expenditures, sales, and book equity from Compustat, and monthly stock returns,

shares outstanding, and volume capitalization from the Center for Research in Security
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Prices (CRSP). All common stocks trading on the NYSE, AMEX, and NASDAQ with

valid accounting and return data are included in the sample. Firms need to be listed

on Compustat for two years before included in our sample. We exclude financial firms,

which have four-digit standard industrial classification (SIC) codes between 6,000 and

6,999 (finance, insurance, and real estate sectors). Like Fama and French (1993), we

discard closed-end funds, trusts, American Depository Receipts, Real Estate Investment

Trusts, units of beneficial interest, and firms with negative book equity. For some of

our tests, we also use the firm-level patent-related data, which are mainly drawn from

the updated National Bureau of Economic Research (NBER) patent database originally

developed by Hall, Jaffe, and Trajtenberg (2001). However, these data are only available

to December of 2006.

In general, information quality is measured by signal precision. Suppose that there is

a parameter θ that an investor wants to learn, and assume that a signal s is related to the

parameter by s = θ+ε, where ε ∼ (0, σ2
s). Then the signal precision is given by hs = 1/σ2

s .

In practice, σ2
s is unknown and must be estimated, σ̂2

s = V ar(e), and e = s−θ. However,

this estimate is sensitive to outliers when the sample size used is small, and this is exactly

the case in our study. We therefore rely on R-square: R2 = 1 − V ar(e)
V ar(s)

, which captures

variation of s explained by θ and which is more robust to outliers. There is clearly a

one-to-one relationship between signal precision and R-square. The smaller the R-square

is, the lower information quality is.

This paper focuses on how investors resolve uncertainties inherent in R&D from con-

ceptualization to commercialization. The main objective of a firm’s R&D activities is to

develop new products, services, and technologies, whose success is directly reflected in its

sales. We therefore measure R&D information quality by assessing how much variation

of a firm’s sales growth can be explained by its R&D expenditures. Given the facts that

different firms may have different R&D lifespans and each year’s R&D expenditures may
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have different effects on firms’ future sales growth, we regress sales growth separately on

each of the past five-year’s realized R&D capitals and take the largest resulting R-square

as our measure of information quality. More specifically, our regression for any firm i for

each year t takes the following form

log
( salesi,t
salesi,t−1

)
= αi,j + βi,j log(1 +RDCk

i,t−j) + εi,t, (1)

where

RDCk
i,t−j =

k

10
RDi,t−j−1 + (

k

10
)2RDi,t−j−2 + (

k

10
)3RDi,t−j−3 + (

k

10
)4RDi,t−j−4, (2)

for j = 1, 2, ..., 5 and k = 1, 2, ..., 9, where RD stands for R&D expenditures and RDC for

the realized R&D capital. When constructing their innovative ability measure, Cohen,

Diether, and Malloy (2013) employ a similar regression to Equation (1) where R&D

expenditures scaled by sales instead of R&D capital are used in the left-hand side. Our

definition of R&D capital in Equation (2) is more flexible than that defined in Chan,

Lakonishok, and Sougiannis (2001) who assume that the productivity of R&D spending

declines linearly by 20 percent each year. The key point in Equations (1) and (2) is

that simply applying the same timespan between R&D input and output and the same

R&D productivity decay rate to all firms is too restrictive. Some firms can take longer

time to materialize R&D spending (e.g., pharmacy) than other firms (e.g., utilities);

and technologies and services in some industries (e.g., chemicals) can be utilized for

longer time periods than those in other industries (e.g., machinery). To accommodate

these concerns, we regress sales growth on R&D inputs in two dimensions: the timespan

between R&D input and output (j) and the R&D capital decay rate (k). Equation (1)

assumes that R&D capitals from year t− 5 to t− 1 are of relevance to sales of year t. In

fact, we have tried other assumptions on R&D lifespan for up to ten years. We find that
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our results are virtually the same.

The regression is run for each firm for each fiscal year t on time series from year t− 7

to year t. We require that there are at least 6 valid observations on R&D expenditures

and that at least 4 RDCs are non-zero. As a result, for each firm-year, there are 45

regressions in total. R&D information quality is then defined as

IQi,t = max
{
R2(j, k)

}
, (3)

where R2(j, k) is the R-square resulting from the regression in Equation (1). The selection

of the largest value of R-squares in Equation (3) is for finding the most relevant R&D

lifespan and decay rate for each firm and should not pose any problems to our study, as

we hypothesize that the lower information quality is, the higher excess future returns will

be. Taking maximum here in fact works against finding any significant results.

2.2. Summary Statistics

Panel A of Table 1 presents the pooled mean, standard deviation, median, and 25th and

75th percentiles of the R&D IQ measure for each industry according to Fama-French 17

industry classifications. It also presents the number of firms in each industry included

in our sample, the market share of each industry in our sample, and the market share of

each industry in the universal sample.

The mean (median) value of the R&D IQ measure varies across industries from 0.41

(0.37) for Automobiles to 0.67 (0.69) for Utilities. The standard deviation does not vary

considerably across industries: its minimum is 0.20 for Transportation, and its maximum

is 0.25 for Retail Stores. However, the number of firms in each industry included in

our sample varies considerably. For example, the sample includes 583 Machinery and

Business Equipment firms, 122 Drugs, Soap, Perfumes, and Tobacco firms, 11 Mining

and Minerals firms, and only 4 Utilities firms. This indicates that it is crucial to control
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for industry effects when examining the R&D IQ-return relationship. A comparison of

market share of each industry in our sample and that in the universal sample shows

that for most industries, these two shares are similar. For example, the market share

of Textiles, Apparel & Footwear in our sample is 0.9% while it is 0.8% in the universal

sample; the market share of Food in our sample is 4.9% while it is 5.7% in the universal

sample. However, there are a few exceptions: Utilities in our sample accounts for only

0.1% whereas it accounts for 5.3% in the universal sample; and Machinery accounts for

28.2% in our sample but only 13.8% in the universal sample. This suggests that while our

sample is economically meaningful and representative overall, it is necessary to control

for industry effect in our study.

In Panel B, we present average values of certain firm-specific variables for the three

R&D IQ portfolios constructed according to the 30th and 70th percentiles of the lagged IQ

(see Section 3 for a detailed discussion). These variables include (log) market equity (ME),

the book-to-market ratio (BEME), return on assets (ROA, Income before extraordinary

items plus interest expenses divided by lagged total assets), return on equity (ROE,

Income before extraordinary items plus interest expenses divided by lagged common

equity), leverage (DXA, long-term debt plus debt in current liabilities divided by total

assets), cash holding, the industry concentration index (HHI, Hou and Robinson, 2006),

and idiosyncratic volatility (IVOL, the standard deviation of Fama-French three-factor

residuals for the past 12 months). We also construct some innovation-related variables:

R&D intensity (RDA, R&D expenditures divided by total assets), innovation ability

(InnAb, Cohen, Diether, and Malloy, 2013), and innovative efficiency (IE, Hirsleifer, Hsu,

and Li, 2013).

We find that innovation ability increases with R&D information quality. It is 0.29,

0.57, and 0.80 for the low, middle, and high IQ portfolios, respectively, whereas the

innovative efficiency of low and high IQ portfolios is quite similar (3.08) and is larger
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than that of the middle IQ portfolio (2.66). We note that size increases with R&D IQ:

the high IQ portfolio has larger size than the low IQ portfolio (278 vs. 205). The low IQ

portfolio presents a larger ROA but a smaller ROE than the high IQ portfolio. Book-to-

market, R&D intensity, leverage, cash holding, industry concentration, and idiosyncratic

volatility do not vary significantly among these three portfolios.

Panel C reports the time-series average of cross-sectional correlations between IQ and

the above-mentioned firm characteristics. IQ is weakly correlated with these variables.

Correlations range from -0.05 (with ROA) to 0.07 (with InnAb). Correlations with ROE,

R&D intensity, and IE are the smallest, ±0.01. The above findings indicate that our R&D

IQ measure is distinct from well-known firm characteristics and may contain different

information.

Panel A of Figure 1 presents the R&D IQ periodic cross-sectional persistence, which

is computed for each time t as the cross-sectional correlation of R&D IQ between time t

and time t − 1 . It is evident that the persistence varies from 0.39 (between years 2006

and 2007) to 0.73 (between years 1983 and 1984) over time. The time-series average of

the periodic cross-sectional persistence is about 0.57 (t = 32.9), indicating that R&D IQ

is a fairly persistent variable. Economically, this suggests that the historical measure of

R&D IQ is a good predictor of future R&D information quality, making the historical

data-based value a useful measure for analyses aimed at discerning the relation between

R&D IQ and future stock returns.

3. R&D Information Quality and Return Predictability

In this section, we examine the relationship between R&D IQ and future stock returns.

Our main hypothesis is that there is a premium for information uncertainty and that ex-

pected excess returns should decrease with R&D information quality. We first implement

portfolio sorts in Subsection 3.1, then perform Fama-MacBeth cross-sectional regressions
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in Subsection 3.2, and finally investigate effects of R&D IQ on firms’ subsequent operating

performance in Subsection 3.3.

3.1. Portfolio Analysis

We first examine R&D information quality and return predictability using portfolio sorts.

Similar to Fama and French (1996), we sort all firms into three R&D IQ portfolios (low,

middle, and high) at the end of June of each year from 1981 to 2012. The low IQ

portfolio contains all stocks below the 30th percentile in R&D IQ, and the high IQ

portfolio contains all stocks above the 70th percentile in R&D IQ. Stocks between the

30th and 70th percentiles belongs to the middle IQ portfolio. We further form a hedge

portfolio that longs the high IQ portfolio and shorts the low IQ portfolio.

3.1.1. Portfolio Returns

We hold these portfolios over the next twelve months and compute their value/equal-

weighted monthly returns. Panel A of Table 2 presents both value- and equal-weighted

average monthly returns in excess of one-month Treasury bill rates for these portfolios.

We find that portfolio returns decrease with R&D IQ. This result holds for both value- and

equal-weighted excess returns. For example, the low IQ portfolio earns 127 basis points

(t = 4.23) per month in value-weighted excess returns and 126 basis points (t = 4.14)

per month in equal-weighted excess returns. However, the high IQ portfolio only earns

88 basis points (t = 2.99) per month in value-weighted excess returns and 78 basis points

(t = 2.56) in equal-weighted excess returns. More importantly, the monthly returns of the

high-minus-low hedge portfolio are economically substantial and statistically significant.

The hedge portfolio earns -39 basis points (t = −4.16) and -48 basis points (t = −4.69)

per month in value- and equal-weighted excess returns, respectively.

To ensure that our results are robust for firm characteristics and industry effects,
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characteristic- and industry-adjusted returns are also reported. Characteristic-adjusted

returns are computed following Daniel et al. (1997) as the difference between individ-

ual firms’ returns and 125 size/book-to-market/momentum benchmark portfolios, and

industry-adjusted returns are calculated as the difference between individual firms’ re-

turns and the returns of firms in the same industry according to the Fama-French 17 indus-

try classifications. Characteristic- and industry-adjusted returns also indicate that port-

folio returns decrease with R&D IQ. The low IQ portfolio earns 18 basis points (t = 2.25)

and 30 basis points (t = 2.46) per month in value-weighted characteristic- and industry-

adjusted returns, respectively, and 16 basis points (t = 1.98) and 14 basis points (t = 0.91)

per month in equal-weighted characteristic- and industry-adjusted returns, respectively.

However, the high IQ portfolio only earns -24 basis points (t = −2.70) and -15 basis

points (t = −1.37) per month in value-weighted characteristic- and industry-adjusted

returns, respectively, and -33 basis points (t = −3.36) and -36 basis points (t = −2.08)

per month in equal-weighted characteristic- and industry-adjusted returns, respectively.

Returns on the hedge portfolio are again economically substantial and statistically sig-

nificant in characteristic- and industry-adjusted returns, -42 basis points (t = −4.23)

and -45 basis points (t = −4.80) in value-weighted characteristic- and industry-adjusted

returns, respectively, and -50 basis points (t = −4.46) and -50 basis points (t = −4.90)

in equal-weighted characteristic- and industry-adjusted returns, respectively.

Panel B of Figure 1 presents the time series of annual equal-weighted and value-

weighted excess returns on short position of the hedge portfolio for July of 1981 to July

of 2012. We find that annual returns to this strategy are relatively stable over time.

Volatility is about 7.9% for value-weighted returns and is about 8.5% for equal-weighted

returns, whereas it is about 17.3% for excess market returns for the same period. The

annual correlation between returns of this strategy and excess market returns is modest: it

is about 28.3% for value-weighted returns and is about 30.3% for equal-weighted returns.
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3.1.2. Risk-Adjusted Returns

We further examine whether R&D IQ portfolio excess returns can be explained by com-

monly used risk factors. We consider the Fama-French three-factor model (Fama and

French, 1993),

ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,HMLHML+ ei, (4)

and the Carhart four-factor model (Carhart, 1997),

ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,HMLHML+ βi,MOMMOM + ei, (5)

where ri − rf denotes portfolio returns in excess of one-month T-bill rates, and MKT ,

SMB, HML, andMOM are the usually used market, size, value, and momentum factors,

respectively. We also consider the two recently developed factor models: the q-factor

model (Hou, Xue, and Zhang, 2015),

ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,I/AI/A+ βi,ROEROE + ei, (6)

where I/A is the investment factor, which is constructed as the difference between the

return on a portfolio of low investment stocks and the return on a portfolio of high invest-

ment stocks, and ROE is the profitability factor constructed as the difference between

the return on a portfolio of high profitability stocks and the return on a portfolio of low

profitability stocks; and the mispricing-factor model (Stambaugh and Yuan, 2016),

ri− rf = αi +βi,MKTMKT +βi,SMBSMB+βi,MGMTMGMT +βi,PERFPERF + ei, (7)
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where MGMT and PERF are referred to as the mispricing factors, which aggregate

information across 11 well-known anomalies by averaging rankings within two clusters

exhibiting the greatest co-movement in long-short returns. The first cluster of anomalies

represent quantities that firms’ managements can affect directly, and the factor arising

from it is MGMT. The second cluster is related more to performance and is less directly

controlled by management, and the factor constructed from this cluster is PERF. There

is some evidence that both the q- and mispricing-factor models perform better than the

Fama-French three-factor model, the Carhart four-factor model, and the Fama-French

five-factor model (Fama and French, 2015) in explaining most of anomalies (Hou, Xue,

and Zhang, 2015, 2016; Stambaugh and Yuan, 2016).

Panels B, C, D, and E of Table 2 present alphas and factor loadings from regressing

portfolio excess returns on the Fama-French three-factor model, on the Carhart four-

factor model, on the q-factor model, and on the mispricing-factor model, respectively.

The alpha estimates deliver the same implication as shown above. In all four models, the

alpha is positive for the low IQ portfolio, whereas it is negative for the high IQ portfolio

in both value- and equal-weighted returns. For example, in the q-factor model, it is 17

basis points (t = 1.52) per month in value-weighted returns and 28 basis points (t = 2.61)

per month in equal-weighted returns for the low IQ returns; however, it is only -21 basis

points (t = −1.71) per month in value-weighted returns and -24 basis points (t = −1.89)

per month in equal-weighted returns for the high IQ portfolio.

More importantly, the hedge portfolio’s alpha is negative, economically substantial,

and highly statistically significant in the four models. For example, the alpha from the

Fama-French three-factor model is -40 basis points (t = −4.04) per month in value-

weighted returns and -52 basis points (t = −4.73) per month in equal-weighted returns;

the alpha from the Carhart four-factor model is -38 basis points (t = −3.71) per month

in value-weighted returns and -49 basis points (t = −4.40) per month in equal-weighted
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returns; the alpha resulted from the q-factor model is -38 basis points (t = −3.50) per

month in value-weighted returns and -53 basis points (t = −4.38) per month in equal-

weighted returns; and it is -33 basis points (t = −2.96) per month in value-weighted

returns and -43 basis points (t = −3.54) per month in equal-weighted returns in the

mispricing-factor model. These findings indicate that investors are uncertain about low

IQ firms’ future R&D activities and typically require higher compensation when making

investments in their future R&D.

In the Fama-French three-factor model and the Carhart four-factor model, all three

IQ portfolios load positively and significantly on market, size, and value factors but

negatively and significantly on momentum. However, in the q- and mispricing-factor

models, these three IQ portfolios load positively and significantly on market and size

factors, but load nearly insignificant on investment, profitability, and mispricing factors.

Factor loadings for the hedge portfolio are small and hardly significant in all these four

models, indicating that returns on this portfolio do not covary with any of these well-

known factors and suggesting that there may be important factor(s) missed in addition

to these well-known factors.

3.2. Fama-MacBeth Cross-Sectional Analysis

In this section, we test the return predictive power of R&D IQ by employing monthly

Fama-MacBeth cross-sectional regressions (Fama and MacBeth, 1973). This analysis

allows for extensive controls of industry effects and of variables that have been found to

have predictive power for stock returns. To be specific, we control for size (Banz, 1981),

book-to-market ratio (Fama and French, 1992), and momentum (Carhart, 1997). We

also consider leverage (Miller and Modigliani, 1958; Ozdagli, 2012), illiquidity (Amihud,

2002), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006; Bali, Cakici, and

Whitelaw, 2011), one-month lagged returns, turnover, capital expenditures (CapEX), and
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industry concentration (HHI) in our regressions. An industry dummy is also introduced

to control for any industry-related effects that may drive our results. Definitions of these

variables have been given in Section 2.

For each month from July of year t to June of year t + 1, we regress monthly excess

returns of individual stocks on our R&D IQ measure and the above control variables of

year t − 1. Table 3 presents the regression results, which confirm our hypothesis: the

lower R&D information quality is, the higher excess returns we expect, as the coefficient

on IQ in each regression we consider is negative and statistically significant. Model 1

in the table considers a simple regression in which we exclude all control variables and

take R&D IQ as the only predictor. The coefficient on R&D IQ is -0.81 and is highly

statistically significant (t = −4.36), and the adjusted R2 is about 1.3% and is highly

statistically significant (t = 6.46). When we introduce size, book-to-market, momentum,

leverage, lagged returns, and turnover in Model 2, the slope estimate on IQ becomes

slightly small, -0.69, but remains highly significant (t = −3.67). Coefficients on the other

variables are not statistically significant. The adjusted R2 increases to 5.4% (t = 13.0).

Our sample mainly includes R&D-intensive firms, whose average size is larger than that of

the universal sample. This may explain insignificance of the traditional control variables.

Our R&D information quality measure constructed from Equation (3) depends on

R-square from regression (1), where volatility of sales growth is also an important input.

In Model 3, except variables introduced in Model 2, we also control volatility of sales

growth, which is measured as the standard deviation of sales growth for the period from

year t − 7 to year t. We find that the coefficient on IQ is still negative and statistically

significant, -0.61 (t = −3.39). We also find that volatility of sales growth significantly

and adversely affects the future stock returns, -1.02 (t = −2.50). The adjusted R2 in this

model is 6.3% (t = 14.3). We further introduce idiosyncratic volatility and illiquidity in

Model 4 and find that the coefficient of our interest, IQ, is -0.53 (t = −2.94) and the
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adjusted R2 is further increased to 7.2% (t = 15.2). The coefficient on turnover is negative

and significant, -0.59 (t = −2.91), and the coefficient on IVOL is positive and marginally

significant, 0.04 (t = 1.91), consistent with Bali, Cakici, and Whitelaw (2011). Model

5, which introduces capital expenditures to Model 2, and Model 6, which introduces

industry concentration to Model 2, deliver similar implication that the coefficient on IQ

is still negative and significant. We note that in both Models 5 and 6, the coefficient

on turnover is negative and significant and that in Model 5, the coefficient on CapEx

is negative and highly significant. The adjusted R2s from these two models are 5.6%

(t = 13.5) and 5.5% (t = 13.2), respectively.

Recently, several works reveal a positive R&D-return relationship. Chan, Lakonishok,

and Sougiannis (2001) find that firms with high ratios of R&D expenditures to market

equity earn high subsequent returns. Eberhart, Maxwell, and Siddique (2004) show that

significant R&D increases predict positive future abnormal returns. Cohen, Diether, and

Malloy (2013) construct an innovation ability measure and argue that firms that exhibit

high ability in the past and that continue to spend a large amount of R&D outperform

in the future. We therefore introduce variables of (i) R&D intensity: RDS (R&D ex-

penditures scaled by sales) and RDA (R&D expenditures relative to total assets); (ii)

significant R&D increases (RDG); and (iii) innovation ability in our regressions. The es-

timates in Model 7 show that after controlling for R&D intensity, RDA, and the variables

used in Model 2, our estimate on IQ is still negative and significant, -0.64 (t = −3.46),

and the coefficient on RDA is not significant. We find that in this model, the coefficient

on turnover is negative and significant. Furthermore, the estimates in Model 8 show that

even after controlling for RDS and innovation ability (InnAb), we obtain the similar result

as obtained before: the estimate on IQ is negative and significant, -0.56 (t = −3.04). The

coefficient on RDS is insignificant and the coefficient on InnAb is negative and significant,

-0.28 (t = −2.53). Whenever we introduce RDG in Model 9, the coefficient on IQ is -0.73
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(t = −3.49), but the coefficient on RDG is not significant. The adjusted R2s from Models

7, 8, and 9 are 6.0% (t = 13.7), 6.2% (t = 14.1), and 5.3% (t = 11.6), respectively.

Hirsleifer, Hsu, and Li (2013) show that firms’ patents and patent citations contain rich

information on future stock returns. We therefore construct their innovative efficiency

measure (IE) and include it in our test. As the NBER patent database only runs to

December of 2006, our sample here is from July of 1980 to July of 2006. Model 10 shows

that when even IE is introduced into the Fama-MacBeth regression, the coefficient on IQ

is still negative and statistically significant, -0.69 (t = −2.78), whereas the coefficient on

IE is insignificant. The adjusted R2 is about 5.7% (t = 11.2).

The results in Subsections 3.1 and 3.2 provide empirical support for some theoretical

conclusions. Brevik and d’Addona (2010) find that high information quality decreases

the equity premium in a pure exchange economy with Epstein-Zin recursive preferences.

In a production-based long-run risk model, Ai (2010) also find that high information

quality decreases the equity premium. Epstein and Schneider (2008) show that in markets

with ambiguous information, expected excess returns decrease with future information

quality, and ambiguity-averse investors require compensation to hold assets with low

quality information. Furthermore, as R&D spending is usually regarded as a good signal

of firms’ future prospects, our results are also consistent with those in Zhang (2006), who

implements an empirical investigation on information uncertainty and stock returns and

who finds that greater information uncertainty leads to higher expected excess returns

following good news but lower returns following bad news.

3.3. R&D IQ and Subsequent Operating Performance

If R&D IQ constructed in Equation (3) really captures information quality in a firm’s

R&D, it should have little effects on its fundamentals. We take return on assets (ROA),

cash flows (CF), and performance (PM, operating income before depreciation scaled
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by lagged sales) as proxies for fundamentals and examine the relationship between IQ

and subsequent operating performance via Fama-MacBeth regressions. As before, we

control for size, book-to-market, leverage, idiosyncratic volatility, illiquidity, and some

innovation-related variables such as R&D intensity and innovation ability. We also intro-

duce the lagged values and changes in fundamental variables in the regressions.

Table 4 reports the Fama-MacBeth regression results. We find that for all three prox-

ies of fundamentals, coefficients on IQ are insignificant. For example, the coefficient on IQ

is -0.01 (t = −1.36) in the ROA regression, 0.02 (t = 1.53) in the PM regression, and -0.01

(t = −1.47) in the CF regression. For these three regressions, coefficients on the lagged

fundamentals and changes in fundamentals are highly statistically significant except for

changes in PM. We also find that the coefficient on size is highly statistically significant

in all cases, indicating that the larger a firm’s size is, the better its subsequent perfor-

mance is. These findings suggest that our IQ measure is not related to undervaluation or

overvaluation to public information already known to the market.

4. Robustness Checks

4.1. Long-Term Cumulative Returns

We further test our hypothesis by examining long-term cumulative portfolio returns. As

stated above, at the end of June of each year, we construct three R&D IQ portfolios and

a hedge portfolio and hold them over the next 12, 24, and 36 months. Table 5 reports

the value-weighted excess returns and the three-, four-, q-, and M -factor alphas for these

portfolios. Even though the low, middle, and high IQ portfolios present similar cumulative

returns and the hedge portfolio’s cumulative return is not significant for the past 12

months, the low IQ portfolio earns much higher cumulative return, 13.38% (t = 4.77),

than the high IQ portfolio, 9.73% (t = 2.99), and the hedge portfolio’s cumulative return
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is statistically significant, -3.64% (t = −2.80) for the future 12 months. A similar pattern

is found for the three-, four-, q-, and M -factor alphas.

All returns and alphas for the three IQ portfolios and hedge portfolio keep increasing

and are statistically significant for the future 24 and 36 months. The hedge portfolio’s

cumulative return is -5.84% (t = −2.66) for the future 24 months and is -8.60% (t =

−2.89) for the future 36 months, and its three-, four-, q-, and M -factor alphas are -

6.27% (t = −2.64), -5.09% (t = −1.75), -5.62% (t = −2.66), and -5.31% (t = −2.03),

respectively, for the future 24 months, and are -11.3% (t = −3.82), -8.40% (t = −2.31),

-8.45% (−2.43), and -8.49% (t = −2.82), respectively, for the future 36 months. We

do not find any reversal, suggesting that our IQ measure does capture a premium for

information quality rather than any form of overreaction.

4.2. R&D IQ Effect and Investor Sentiment

We also investigate whether the R&D IQ effect observed above is caused by behavioral

bias. To do this, we regress the high-minus-low R&D IQ portfolio returns (Spread)

on investor sentiment indices proposed by Baker and Wurgler (2006), who construct a

composite index (SENT1) that captures the common component in the six proxies of

investor sentiment, i.e., the close-end fund discount, turnover, the number of IPOs, the

average first-day returns, equity share, and the dividend premium. Furthermore, to avoid

effects of a common business cycle component, they construct a second sentiment index

(SENT2) that explicitly removes business cycle variations.

Table 6 presents our regression results. It is evident that regardless of whether value-

or equal-weighted R&D IQ spread returns are used, coefficients on SENT1, SENT2,

∆SENT1, and ∆SENT2, and on their corresponding lagged values are statistically in-

significant. The adjusted R2s from all regressions are almost zero. For example, for

value-weighted spread returns, the coefficient on SENT1 is 0.022 with the t−statistics of
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0.14 and the adjusted R2 is about -0.003, and the coefficient on SENT2 is -0.021 with

the t−statistics of -0.12 and the adjusted R2 is about -0.003. For equal-weighted spread

returns, the coefficient on SENT1 is 0.001 with the t−statistics of 0.00 and the adjusted

R2 is about -0.003, and the coefficient on SENT2 is -0.067 with the t−statistics of -0.36

and the adjusted R2 is about -0.002. Regressions of R&D IQ spread returns on ∆SENT1,

∆SENT2, and the lagged values of the above variables present similar results, suggest-

ing a lack of explanatory power of investor sentiment to abnormal returns on R&D IQ

portfolios.

4.3. Other Robustness Checks

We argue that the success of a firm’s R&D activities is directly reflected in its sales. We

therefore use sales growth as a signal to construct R&D IQ. To have a robustness check

that the R&D IQ-return relationship we have found is not a reflection of the negative

relation of sale growths and future returns (Lakonishok, Shleifer, and Vishny, 1994), we

replace sales growth by return-on-assets (ROA), which should also be affected by firms’

R&D activities, in regression (1) to construct our R&D IQ measure. Following the same

procedure, we find similar results as in Section 3. For instance, the analog of the hedge

portfolio in Table 2 has monthly excess return of -22 basis points (t = −2.34) in equal-

weighted returns and of -18 basis points (t = −2.11) in value-weighted returns.

As an alternative robustness check, we replace R&D capital by a more tangible vari-

able, capital expenditure, in regression (1). In this case, we find that the results we have

observed in Section 3 are completely disappeared. These two robustness checks suggest

that the measure constructed in Equation (3) does capture R&D information quality and

there exists a premium for R&D information quality.
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5. Further Empirical Evidence

In this section, we provide further evidence on the relationship between R&D IQ and

future stock returns. If our R&D IQ measure really captures information quality in

firms’ R&D, and there exists a premium for R&D IQ in excess returns, we conjecture that

the relationship should become stronger and the premium should be larger in firms with

smaller size, younger age, greater financial constraints, and higher return and fundamental

volatility, as such firms generally operate in more uncertain business environments and

investors are more ambiguous to their future prospects.

We perform independent double sorts on R&D IQ and firm size, firm age, financial

constraint, return volatility, and fundamental volatility. At the end of June of each

year, we first sort all firms into three portfolios based on each of the above conditioning

variables and then sort each of these three portfolios into three subgroups based on R&D

IQ and form a high-minus-low IQ hedge portfolio in each of these three portfolios. In

his study, Zhang (2006) uses firm size, firm age, stock return volatility, and cash flow

volatility (as well as analyst coverage) to measure information uncertainty. In what

follows, we only report results based on value-weighted portfolio returns. The results in

equal-weighted returns are similar and are available in an unreported appendix, in which

we also implement monthly Fama-MacBeth cross-sectional regressions across subsamples

split by the above conditioning variables, respectively, and find the same results as those

presented below.

5.1. Firm Size

We measure firm size by its market capitalization. Small firms usually have more expen-

sive access to external financial fundings, are more likely to be growing firms in rapidly

developing and intrinsically volatile industries, are less diversified, and have more serious
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asymmetric information problems. Banz (1981) regards firm size a proxy for risk; Ami-

hud and Mendelson (1986) and Liu (2006) find that the size effect is linked to liquidity

risk; Zhang (2006) takes firm size as a proxy for information uncertainty.

Table 7 presents the double-sorting results in value-weighted returns, which strongly

confirm our conjecture. From Panel A, we find that the hedge portfolio’s returns and

alphas are economically substantial and statistically significant for small firms, whereas

they become smaller (though still significant) for big firms. For example, monthly excess

returns and characteristic- and industry-adjusted returns are -96 basis points (t = −2.91),

-100 basis points (t = −3.02), and -104 basis points (t = −3.03), respectively, for small

firms, whereas they are only -28 basis points (t = −2.34), -32 basis points (t = −2.57),

and -30 basis points (t = −2.58), respectively, for big firms. The Fama-French three-factor

alpha is -99 basis points (t = −3.02) per month, the Carhart four-factor alpha is -110

basis points (t = −3.23) per month, the q-factor alpha is -121 basis points (t = −3.31)

per month, and the M -factor alpha is -107 basis points (t = −2.82) per month, for small

firms. However, these alphas are only -24 basis points (t = −1.94), -25 basis points

(t = −1.96), -30 basis points (t = −2.25), and -25 basis points (t = −1.88), per month

for big firms.

5.2. Firm Age

Young firms may face liability of newness (Stinchcombe, 1965). They are vulnerable to

unexpected shocks, and their growth paths are difficult to predict. This makes their fu-

ture prospects more ambiguous to investors. By constrast, old firms may have smoother

growth paths with fewer bumps and surprises and usually have more easy-to-access in-

formation available to investors (Barry and Brown, 1985). Investors should become con-

cerned when they observe low R&D quality information from young firms.

Panel B reports portfolio results based on firm age and R&D IQ. Firm age is defined
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as the number of years listed on Compustat with non-missing price data. Consistent to

our conjecture, we find that for young firms, the low IQ portfolio always earns higher

returns per month, which are always statistically significant, than the high IQ portfolio,

whose returns are hardly significant. For example, for young firms, the excess return

and characteristic- and industry-adjusted returns are 150 basis points (t = 4.13), 41 basis

points (t = 2.46), 55 basis points (t = 2.94) per month, respectively, and the three-, four-,

q-, and M -factor alphas are 42 basis points (t = 2.27), 43 basis points (t = 2.22), 64 basis

points (t = 3.07), and 39 basis points (t = 1.81) per month, respectively, for the low

IQ portfolio, whereas all three returns and alphas are smaller for the high IQ portfolio.

However, the pattern that holds for young firms is hardly observed for old firms.

Furthermore, the high-minus-low IQ hedge portfolio earns much more substantial

and significant returns and alphas per month in young firms than in old firms. The

hedge portfolio earns -120 basis points of excess return per month, -112 basis points

of characteristic-adjusted return per month, and -123 basis points of industry-adjusted

return per month, all of which are statistically significant at 1% level, and its three-, four-,

q-, and M -factor alphas are -110 basis points (t = −3.98), -91 basis points (t = −3.22),

-103 basis points (t = −2.98), and -75 basis points (t = −2.31) per month, respectively.

However, for older firms, the hedge portfolio’s returns and alphas are very small and

completely insignificant.

5.3. Firm Financial Constraints

Firms with financial constraints have limited capacities to fund their desired investments.

Lamont, Polk, and Saá-Requejo (2001) show that financial constraints affect firm value

and that the severity of constraints varies over time, but constrained firms surprisingly

earn lower returns than unconstrained firms. However, Whited and Wu (2006) find that

more constrained firms earn higher average returns than less constrained firms, but the
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difference is not significant. Livdan, Sapriza, and Zhang (2009) revisit the relationship

between financial constraints and stock returns and find that more financially constrained

firms are riskier and earn higher expected stock returns than less financially constrained

firms. Campello and Chen (2010) find evidence suggesting that financially constrained

firms have higher systematic risk and that the constraint risk is priced in the financial

markets. Li (2011) finds that the positive R&D-return relationship only exists for finan-

cially constrained firms.

Financial constraint is alway related to firm size and firm age. Small firms and young

firms are usually considered to be more financially constrained than larger firms and old

firms. For example, Li (2011) takes firm size and firm age as two proxies for financial

constraint. We show above that for small and young firms, the relationship between R&D

IQ and future stock returns is much stronger than that for large and old firms, indirectly

indicating that investors require higher premium for ambiguous R&D information quality.

Here, we further investigate this implication by using a more formal measure of financial

constraint: the KZ index (Kaplan and Zingales, 1997).

Panel C compares R&D IQ effect between financially constrained (high KZ index)

firms and financially unconstrained (low KZ index) firms. We find that the IQ effect

is much stronger for firms with high KZ index. The returns and alphas of the hedge

portfolio are large and statistically significant for financially constrained firms, whereas

they become small and always insignificant for financially unconstrained firms. For ex-

ample, the monthly excess return, and characteristic- and industry-adjusted returns of

the hedge portfolio are -42 basis points (t = −3.18), -41 basis points (t = −3.02), and -51

basis points (t = −3.83), respectively, for high KZ index firms, whereas they are only -23

basis ponts, -37 basis points, and -41 basis points, respectively, and are not statistically

significant for low KZ index firms. The three-, four-, q-, and M -factor alphas exhibit the

same pattern: they are -43 basis points (t = −3.07), -46 basis points (t = −3.27), -48
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basis points (t = −3.32), and -39 (t = −2.67) basis points per month, respectively, for

high KZ index firms, whereas they become small and insignificant for low KZ index firms.

5.4. Firm’s Fundamental and Return Volatility

Zhang (2006) takes fundamental volatility and return volatility as two proxies for in-

formation uncertainty. In a theoretical model, Epstein and Schneider (2008) show that

investors require more compensation for poor information quality when fundamentals are

more volatile, whereas when fundamentals do not move much, investors do not care much

about whether information quality is good or not. We empirically investigate this issue

by using our R&D IQ measure.

Fundamental volatility is measured by cash flow uncertainty, which is defined as the

standard deviation of return on asset (ROA) for the past three years. From Panel D, we do

find that returns and alphas of the high-minus-low hedge portfolio are more economically

substantial and statistically significant for firms with high fundamental volatility than

for firms with low fundamental volatility. For example, the monthly excess return, and

characteristic- and industry-adjusted returns of the hedge portfolio are -103 basis points

(t = −3.91), -103 basis points (t = −3.58), and -110 basis points (t = −4.43), respectively,

and its three-, four-, q-, and M -factor alphas are -98 basis points (t = −3.54), -104 basis

points (t = −3.42), -121 basis points (t = −3.74), and -100 basis points (t = −2.82)

per month, respectively, for high fundamental volatility firms. However, both returns

and alphas of the hedge portfolio are much small and insignificant for low fundamental

volatility firms.

We further examine the R&D IQ effect for high return volatility firms and low return

volatility firms, where return volatility is calculated as the standard deviation of the

Fama-French three-factor residuals for the past 12 months. We find exactly the same

pattern as observed above.
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6. An R&D Information Quality Factor

Table 2 shows that commonly used factor models such as the Fama-French three-factor

model and the Carhart four-factor model cannot fully explain return dynamics. To further

examine whether R&D IQ effect on future stock returns reflects commonality in returns

that is not captured by the existing factors, we construct a factor-mimicking portfolio for

R&D information quality following the same methodology as that in Fama and French

(1993). Given that firm size increases with R&D IQ as reported in Table 1, we control

for size in constructing the R&D IQ factor. At the end of June of year t from 1981 to

2012, we independently sort firms into two size portfolios (small “S” and big “B”) based

on NYSE median size breakpoint at the end of June of year t, and into three R&D IQ

portfolios (low “L”, middle “M”, and high “H”) based on the 30th and 70th percentiles

of R&D IQ in year t− 1. The intersection of these portfolios forms six size-IQ portfolios,

namely, S/L, S/M, S/H, B/L, B/M, and B/H.

We hold these six portfolios for the next 12 months and compute their monthly value-

weighted returns. The factor-mimicking portfolio for R&D IQ (IQF) is constructed as

follows: (S/L + B/L)/2 - (S/H + B/H)/2. The IQF factor is thus size-adjusted and

reflects the return comovement associated with R&D information quality. The IQF fac-

tor constructed from equal-weighted returns is quite similar and available upon request.

Panel A of Table 8 reports the means, standard deviations, and ex post Sharpe ratios of

IQF and the commonly used factors, i.e., the market factor (MKT), size factor (SMB),

value factor (HML), and momentum factor (MOM). To compare with other innovation-

related measures, we construct the following innovation factors: RDF (a factor based on

R&D intensity), RDGF (a factor based on significant R&D growth), IEF (a factor based

on Hirsleifer, Hsu, and Li’s (2013) innovative efficiency), and NPF (a factor based on the

number of patents scaled by market equity).
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The average return of IQF is 30 basis points per month, which is smaller than that of

MKT (60 basis points), HML (36 basis points), and MOM (60 basis points), but larger

than average returns of SMB (10 basis points) and all other innovation-related factors.

The standard deviation of IQF is 2.83%, which is smaller than those of nearly all of the

factors considered except for that of NPF (2.67%). Furthermore, the ex post Sharpe

ratios of these factors show that IQF offers a Sharpe ratio of 0.11, which is slightly lower

than those for MKT (0.13), HML (0.12), and MOM (0.13) but larger than those for SMB

(0.03) and all of the innovation-related factors.

Panel B of Table 8 presents the monthly correlations of all examined factors. We

find that IQF is weakly correlated with and distinct from these factors. Its correlation

with MKT is the smallest, 0.03, and its correlation with RDF is the strongest, 0.27. The

average of absolute correlations between IQF and the other factors is about 0.17, which

is smaller than those of the other factors except for MOM (0.13) and RDGF (0.15).

Figure 2 plots annual returns on the IQ factor (IQF) and on the market factor (MKT)

from 1981 to 2012. The market factor is more volatile than the IQ factor. It can be

as large as about 30% and as small as nearly -40%, and its standard deviation is about

17.32%. However, the IQ factor ranges from about -15% to about 20% and has a standard

deviation of 8.45%. In the figure, we also highlight NBER recessions as gray areas. For

the four recessions occurring in 1982, 1991, 2001, and 2008, the IQ factor performs better

than the market factor in 1982, 2001, and 2008, and its outperformance is particularly

striking during the Internet bubble burst of 2001 and during the recent global financial

crisis of 2008. In 2001, the market factor has a return of -15.2%, whereas the IQ factor

earns a positive return of 8.27%. In 2008, there is a severe market downturn: the return

on the market factor reaches a historical low of -38.34%; however, the return on the IQ

factor remains positive, 3.36%. The annual correlation between MKT and IQF is about

34.2%.
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These findings indicate that IQF captures a different factor and that it may be bene-

ficial to add IQF to existing factor models. For this purpose, similar to Hirshleifer, Hsu,

and Li (2013), we construct different tangency portfolios using the above risk factors.

Panel C presents optimal portfolio weights and ex post Sharpe ratios for these tangency

portfolios. It is evident that when we only use the market factor (MKT), the monthly

optimal Sharpe ratio is 0.13. When we introduce SMB together with MKT, the optimal

weight on SMB is only 3%, whereas it is 97% on MKT. The optimal Sharpe ratio remains

the same as above (0.13). When we use the Fama-French three factors (MKT, SMB, and

HML) to construct the tangency portfolio, the optimal Sharpe ratio increases to 22%

with mean of 0.40 and standard deviation of 1.79, and the largest weight is on HML

(52%) followed by MKT (33%) and SMB (15%).

Upon applying our R&D IQ factor (IQF) and the Fama-French three factors, we find

that the optimal Sharpe ratio further increases to 0.25 with mean of 0.39 and standard

deviation of 1.54. The largest portfolio weight is now on IQF (42%) and the smallest

weight is on HML (7%). When the momentum factor (MOM) is also available, the

optimal Sharpe ratio reaches 0.31 with mean of 0.44 and standard deviation of 1.44. For

this tangency portfolio, the largest weight is still on IQF (37%) followed by SMB (24%),

MKT (15%), MOM (19%), and HML (5%).

From rows 6 to 9, we individually introduce the innovation-related factors (RDF,

RDGF, IEF, and NPF) into the tangency portfolio together with IQF and the Fama-

French three factors. We find that the Sharpe ratios of these tangency portfolios are

nearly the same as that based on IQF and the Fama-French three factors, and the weights

on these innovation-related factors are small, ranging from 2% (in row 6) to 5% (in row

7). When we put all factors together in row 10, the Sharpe ratio is 0.31, which is the same

as that of the tangency portfolio in row 5, and the weights on these innovation-related

factors are still very small (ranging from -3% for RDF to 5% for NPF). The largest weight
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in these tangency portfolios is again found for IQF, ranging from 35% to 42%.

The significant weight on IQF in these tangency portfolios and its role in improving

the ex post Sharpe ratio are consistent with that shown in Panels A and B, where IQF

has a relatively high mean and a small standard deviation, and its correlations with other

factors are small. The above findings suggest that IQF does capture a pricing factor that

is distinct from other well-known existing factors.

7. Conclusion

R&D investments are surrounded by a high degree of uncertainty due to the nature of

R&D activities and a lack of accounting disclosure. We hypothesize that there exists

a premium for ambiguous R&D information. Even though we cannot know its future

information quality of a firm’s R&D activities, past information on how much variation

of its fundamentals can be explained by its R&D expenditures serves as a useful measure

for evaluating its future R&D activities. We construct an R&D information quality (IQ)

measure by connecting innovation input (R&D expenditures) and innovation outcome

(sales). More specifically, R&D information quality is captured by the R-square from the

regression of sales growth on the realized R&D capital.

We find strong evidence that expected excess returns decrease with R&D information

quality. The high-minus-low IQ hedge portfolio earns excess return of about -39 basis

point per month, characteristic-adjusted return of about -42 basis points per month, and

industry-adjusted return of about -45 basis points per month in value-weighted returns. In

value-weighted returns, the risk-adjusted monthly alpha of the hedge portfolio is about

-40 basis points in the Fama-French three-factor model, about -38 basis points in the

Carhart four-factor model, about -38 basis points in the q-factor model, and about -33

basis points in the M -factor model. All of these values are highly statistically significant.

The same pattern is found in equal-weighted returns. Our Fama-MacBeth cross-sectional
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analysis shows that these results are robust in controlling for firm-specific variables that

are known to have return predictability power and for some innovation-related variables.

The IQ-return relationship is even stronger in firms with smaller size, younger age,

greater financial constraints, and higher fundamental and return volatility, as these firms

usually have more uncertain business environments and investors are more ambiguous to

their future prospects. Based on R&D IQ, we form a factor-mimicking portfolio (IQF),

that is found to be weakly correlated with commonly used factors such as the market,

size, value and momentum factors and with innovation-related factors proposed in the

literature. Constructions of tangency portfolios show that adding IQF to the Fama-

French three factors improves the ex post Sharpe ratio by 14% and that the weight on

IQF dominates the other factors, indicating that IQF has incremental pricing effects

relative to well-known pricing factors.
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Table 1: Summary Statistics

Panel A reports the pooled mean, standard deviation, 25th percentile, median, and 75th percentile of
the R&D information quality (IQ) measure across industries according to the Fama-French 17 industry
classifications for the period from 1980 to 2012. The number of firms in each industry included in
the sample (NFirm), the market share of each industry in the sample (SShare), and the market share
of each industry in Compustat (MShare) are also reported. Panel B reports the average values of
some selected firm-specific variables, including (log) market equity (ME), book-to-market ratio (BEME),
return on assets (ROA, Income before extraordinary items plus interest expenses divided by lagged
total assets), return on equity (ROE, Income before extraordinary items plus interest expenses divided
by lagged common equity), leverage (DXA, long-term debt plus debt in current liability divided by
total assets), cash holding, industry concentration index (HHI, Hou and Robinson, 2006), idiosyncratic
volatility (IVOL, standard deviation of Fama-French three-factor residuals for the past 12 months), R&D
intensity (RDA, R&D expenditures divided by total assets), innovation ability (InnAb, Cohen, Diether,
and Malloy, 2013), and innovative efficiency (IE, Hirsleifer, Hsu, and Li, 2013) for the three R&D IQ
portfolios constructed according to the 30th and 70th percentiles of the lagged IQ. Panel C reports the
time-series correlations between R&D IQ and the above-mentioned firm characteristics.

Panel A: R&D Information Quality across Industries

Mean STD Q25 Median Q75 NFirms SShare MShare
Cars 0.41 0.21 0.24 0.37 0.56 43 1.5 2.0

Chems 0.43 0.23 0.23 0.38 0.62 74 3.2 2.4
Clths 0.47 0.22 0.28 0.46 0.62 45 0.9 0.8
Cnstr 0.46 0.22 0.29 0.42 0.61 83 2.8 2.6

Cnsum 0.47 0.23 0.26 0.44 0.67 122 19.2 12.5
Durbl 0.46 0.23 0.25 0.42 0.65 94 2.0 1.0
FabPr 0.47 0.23 0.27 0.45 0.62 28 0.6 0.3
Food 0.44 0.24 0.24 0.40 0.61 63 4.9 5.7

Machn 0.45 0.23 0.26 0.42 0.61 583 28.2 13.8
Mines 0.45 0.21 0.29 0.43 0.57 11 0.6 0.8

Oil 0.55 0.23 0.34 0.59 0.73 29 4.9 9.1
Other 0.49 0.23 0.29 0.47 0.67 693 27.6 30.5
Rtail 0.54 0.25 0.34 0.51 0.77 22 0.2 7.9
Steel 0.47 0.23 0.26 0.46 0.63 42 1.2 0.8
Trans 0.49 0.20 0.33 0.47 0.67 52 2.0 4.4
Utils 0.67 0.22 0.54 0.69 0.85 4 0.1 5.3

Panel B: Summary Statistics across IQ Portfolios

ME BEME ROA ROE DXA Cash HHI Ivol RDA IE InnAb
Low IQ 205 0.68 0.03 -0.04 0.18 0.43 0.18 10.5 0.06 3.08 0.29
Mid IQ 248 0.73 0.02 -0.09 0.19 0.43 0.19 10.8 0.05 2.66 0.57
High IQ 278 0.71 0.01 0.09 0.20 0.52 0.19 11.3 0.06 3.08 0.80

Panel C: Correlation Matrix

IQ ME BEME ROA ROE DXA Cash HHI Ivol RDA IE InnAb
IQ 1.00
ME 0.03 1.00

BEME 0.02 -0.12 1.00
ROA -0.05 0.12 -0.14 1.00
ROE 0.01 0.01 0.00 0.07 1.00
DXA 0.05 -0.01 0.06 -0.11 0.01 1.00
Cash 0.02 -0.02 -0.05 -0.19 -0.02 -0.13 1.00
HHI -0.02 -0.04 0.10 0.10 0.02 0.12 -0.10 1.00
Ivol 0.06 -0.11 0.09 -0.38 -0.01 -0.01 0.09 -0.14 1.00

RDA -0.01 -0.06 -0.16 -0.45 -0.05 -0.17 0.26 -0.24 0.29 1.00
IE -0.01 0.32 -0.05 0.06 0.01 -0.01 -0.02 0.01 -0.05 -0.04 1.00

InnAb 0.07 -0.04 0.04 -0.03 -0.01 0.05 -0.00 0.04 0.06 -0.06 -0.04 1.00
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Table 2: R&D Information Quality and Return Predictability

This table presents average monthly portfolio returns (in %) based on single sort using R&D IQ. Each
month stocks with non-missing lagged IQ are sorted into three groups based on the 30%/40%/30%
breakpoints of R&D IQ. When forming portfolios, we impose the restriction that lagged price must be
greater than $5 (breakpoints are computed before imposing the lagged price restriction). We hold these
portfolios over the next 12 months and compute both their equal-weighted and value-weighted returns. In
Panel A, we report excess returns, characteristic-adjusted returns, and industry-adjusted returns. Excess
return is the difference between portfolio returns and the one-month Treasury bill rate. Characteristic-
adjusted returns are computed by adjusting returns using 125 (5×5×5) size/book-to-market/momentum
portfolios (Daniel et al., 1997), and industry-adjusted returns are computed by adjusting returns using
17 industry portfolios (Fama and French, 1997). In Panel B, C, D and E, we report the alphas and factor
loadings from regressing portfolio excess returns on the Fama-French three factors (Fama and French,
1993), on the Carhart four factors (Carhart, 1997), on the q factors (Hou, Xue, and Zhang, 2015), and
on the mispricing factors (Stambaugh and Yuan, 2016), respectively. The sample period is from July
1981 to June 2012.

Value-Weighted Returns Equal-Weighted Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Panel A: Portfolio Returns
Excess Returns 1.27 1.23 0.88 -0.39 1.26 1.22 0.78 -0.48

(4.23) (4.32) (2.99) (-4.16) (4.14) (4.14) (2.56) (-4.69)
Char-Adj Returns 0.18 0.14 -0.24 -0.42 0.16 0.11 -0.33 -0.50

(2.25) (1.84) (-2.70) (-4.23) (1.98) (1.45) (-3.36) (-4.46)
Ind-Adj Returns 0.30 0.23 -0.15 -0.45 0.14 0.07 -0.36 -0.50

(2.46) (1.96) (-1.37) (-4.80) (0.91) (0.47) (-2.08) (-4.90)
Panel B: Alphas and Loadings from the Three-Factor Model (Fama and French, 1993)

Alpha 0.16 0.14 -0.24 -0.40 0.20 0.14 -0.32 -0.52
(1.59) (1.58) (-2.32) (-4.04) (2.02) (1.52) (-2.94) (-4.73)

MKT 1.06 1.04 1.06 -0.01 1.02 1.02 1.03 0.01
(44.9) (40.7) (42.3) (-0.29) (47.6) (36.7) (41.4) (0.43)

SMB 0.45 0.44 0.41 -0.04 0.58 0.55 0.51 -0.07
(6.33) (6.06) (6.07) (-1.28) (9.90) (7.72) (7.78) (-1.82)

HML 0.15 0.14 0.21 0.06 0.07 0.12 0.16 0.09
(2.97) (2.81) (3.68) (1.58) (1.51) (2.48) (2.81) (2.14)

Panel C: Alphas and Loadings from the Four-Factor Model (Carhart, 1997)
Alpha 0.25 0.22 -0.13 -0.38 0.29 0.20 -0.20 -0.49

(2.70) (2.30) (-1.29) (-3.71) (3.08) (2.02) (-2.01) (-4.40)
MKT 1.04 1.02 1.02 -0.01 0.99 1.00 1.00 0.00

(44.2) (42.3) (35.7) (-0.46) (45.7) (38.6) (36.3) (0.16)
SMB 0.46 0.45 0.42 -0.04 0.59 0.56 0.52 -0.07

(7.68) (7.09) (7.89) (-1.23) (12.3) (8.74) (10.2) (-1.80)
HML 0.12 0.11 0.17 0.05 0.03 0.10 0.12 0.09

(2.44) (2.55) (3.53) (1.46) (0.83) (2.25) (2.63) (2.04)
MOM -0.11 -0.09 -0.13 -0.02 -0.11 -0.07 -0.14 -0.03

(-3.71) (-2.75) (-3.58) (-0.90) (-4.25) (-2.06) (-3.92) (-0.98)
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Panel D: Alphas and Loadings from the q-Factor Model (Hou, Xue, and Zhang, 2015)
Alpha 0.17 0.19 -0.21 -0.38 0.28 0.20 -0.24 -0.53

(1.52) (1.79) (-1.71) (-3.50) (2.61) (1.89) (-1.89) (-4.38)
MKT 1.05 1.02 1.04 -0.01 0.99 0.99 1.01 0.01

(38.6) (35.2) (35.0) (-0.39) (41.5) (32.9) (36.1) (0.46)
SMB 0.45 0.45 0.38 -0.04 0.55 0.56 0.47 -0.08

(7.19) (6.73) (5.64) (-2.18) (11.4) (8.61) (7.32) (-1.99)
I/A 0.10 0.03 0.20 0.10 -0.01 -0.00 0.12 0.13

(1.79) (0.38) (2.80) (1.81) (-0.14) (-0.01) (1.52) (1.96)
ROE 0.01 0.01 -0.05 -0.06 -0.07 -0.00 -0.09 -0.02

(0.25) (0.16) (-0.85) (-1.63) (-1.69) (-0.05) (-1.63) (-0.42)
Panel E: Alphas and Loadings from the Mispricing-Factor Model (Stambaugh and Yuan, 2016)
Alpha 0.14 0.20 -0.19 -0.33 0.21 0.20 -0.22 -0.43

(1.40) (2.01) (-1.85) (-2.96) (2.12) (1.99) (-2.12) (-3.54)
MKT 1.04 0.99 1.01 -0.03 0.99 0.96 0.97 -0.02

(46.1) (40.1) (32.4) (-0.85) (42.1) (35.9) (32.2) (-0.49)
SMB 0.52 0.51 0.45 -0.06 0.62 0.61 0.54 -0.08

(8.09) (8.03) (6.96) (-1.78) (13.6) (10.9) (9.64) (-1.97)
MGMT -0.00 -0.07 0.02 0.02 -0.10 -0.11 -0.06 0.04

(-0.05) (-1.73) (0.40) (0.64) (-2.53) (-2.98) (-1.21) (0.91)
PERF -0.04 -0.07 -0.09 -0.05 -0.06 -0.08 -0.12 -0.05

(-1.51) (-2.43) (-2.24) (-1.56) (-2.50) (-2.56) (-3.11) (-1.63)
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Table 3: Fama-MacBeth Cross-Sectional Regressions

This table presents monthly Fama-MacBeth (1973) regressions of returns on R&D IQ. Control vari-
ables include: size (Banz, 1981), book-to-market ratio (Fama and French, 1992), momentum (Carhart,
1997), leverage (Miller and Modigliani, 1958; Ozdagli, 2012), illiquidity (Amihud, 2002), volatility of
sales growth (VolSale), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006; Bali, Cakici,
and Whitelaw, 2011), one-month lagged returns, turnover, capital expenditures (CapEX), and industry
concentration (HHI). Some innovation-related variables are also taken into consideration: R&D expendi-
tures scaled by sales, R&D expenditures scales by total assets, significant increases of R&D expenditures
(Eberhart, Maxwell, and Siddique, 2004), innovation ability (Cohen, Diether, and Malloy, 2013), and
innovative efficiency (Hirsleifer, Hsu, and Li, 2013). All regressions includes industry dummies (using
Fama and French (1997) 17-industry classification scheme). The regressions only include stocks with
lagged price greater than $5. The sample period is from July 1981 to June 2012. t-statistics are in
parenthesis.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
IQ -0.81 -0.69 -0.61 -0.53 -0.68 -0.66 -0.64 -0.56 -0.73 -0.69

(-4.36) (-3.67) (-3.39) (-2.94) (-3.61) (-3.46) (-3.46) (-3.04) (-3.49) (-2.78)
log(ME) 0.04 -0.00 0.08 0.05 0.04 0.04 -0.02 0.05 0.02

(0.85) (-0.01) (2.05) (1.01) (0.82) (0.88) (-0.35) (1.00) (0.25)
BEME 0.04 -0.02 0.08 -0.02 0.03 0.03 -0.02 0.19 0.26

(0.22) (-0.12) (0.50) (-0.08) (0.17) (0.17) (-0.11) (1.00) (1.23)
MOM 0.08 0.08 0.10 0.09 0.08 0.06 0.05 0.09 0.12

(0.53) (0.52) (0.71) (0.59) (0.51) (0.41) (0.35) (0.63) (0.71)
DXA -0.13 -0.30 -0.27 -0.21 -0.08 -0.10 -0.31 0.03 -0.13

(-0.38) (-0.87) (-0.78) (-0.61) (-0.22) (-0.29) (-0.90) (0.07) (-0.29)
R−1 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.00 0.00 -0.00

(-0.49) (-0.41) (-1.26) (-0.45) (-0.48) (-0.53) (-0.40) (0.09 ) (-0.20)
turnover -0.38 -0.21 -0.59 -0.42 -0.39 -0.44 -0.29 -0.14 -0.28

(-1.92) (-1.07) (-2.91) (-2.12) (-1.98) (-2.26) (-1.46) (-0.63) (-1.08)
VolSale -1.02

(-2.50)
IVOL 0.04

(1.91)
ILLIQ -0.00

(-0.91)
CapEx -3.69

(-2.93)
HHI -0.34

(-1.13)
RDS -0.54

(-0.61)
RDA 1.24

(1.03)
InnAb -0.28

(-2.53)
RDG -0.00

(-0.00)
IE -0.01

(-0.89)
Intercept 1.40 0.95 1.61 0.01 1.06 0.99 0.94 1.71 0.60 1.16

(4.29) (1.25) (2.15) (0.02) (1.39) (1.31) (1.32) (2.22) (0.74) (1.18)
Adj R2 1.3 5.4 6.3 7.2 5.6 5.5 6.0 6.2 5.3 5.7

(6.46) (13.0) (14.3) (15.2) (13.5 ) (13.2) (13.7) (14.1) (11.6) (11.2)
Industry Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes41



Table 4: R&D Information Quality and Subsequent Operating Performance

This table reports the average slopes (in percent) and their time series t-statistics in parentheses from
annual Fama-MacBeth (1973) cross-sectional regressions of individual stocks’ operating performance
measures in year t + 1 on R&D IQ and other control variables in year t. We measure operating per-
formance by return on assets (ROA), cash flows (CF), and performance (PM, operating income before
depreciation scaled by the lagged sales). We control for size, book-to-market, leverage, idiosyncratic
volatility, illiquidity, and some innovation-related variables such as R&D intensity and innovation abil-
ity. We also introduce the lagged values and the changes of fundamental variables in the regressions.
Industry dummies are also introduced based on the Fama and French (1997) 17 industry classification.

ROAt+1 PMt+1 CFt+1

IQ -0.01 0.02 -0.01
(-1.36) (1.53) (-1.47)

ROA 0.61
(13.67)

∆ROA -0.13
(-3.64)

PM 0.59
(4.96)

∆PM 0.06
(1.08)

CF 0.58
(15.2)

∆CF -0.22
(-9.66)

log(ME) 0.00 0.02 0.01
(4.46) (3.37) (6.06)

BEME -0.02 -0.01 -0.00
(-3.44) (-1.08) (-0.63)

DXA -0.02 0.04 0.08
(-1.95) (1.23) (6.22)

IVOL -0.00 -0.00 -0.00
(-6.24) (-0.36) (-3.18)

ILLIQ 0.00 -0.00 -0.00
(1.39) (-0.09) (-2.56)

RDS -0.02 -0.04 -0.05
(-2.38) (-0.27) (-2.94)

InnAb -0.00 -0.00 -0.00
(-0.85) (-0.46) (-0.96)

Intercept 0.03 -0.11 0.01
(2.26) (-1.92) (0.23)

Adj R2 43.6 55.6 39.4
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Table 5: R&D Information Quality and Long-Term Future Returns

This table presents long-term portfolio cumulative returns (in %) based on single sort using R&D IQ. At
the end of June of each year, stocks with non-missing lagged IQ are sorted into three groups based on
the 30%/40%/30% breakpoints of R&D IQ. We then hold these portfolios over the next 12, 24, and 36
months and compute value-weighted cumulative returns of these IQ portfolios. We report excess returns,
the three-factor (Fama and French, 1993), four-factor (Carhart, 1997), q-factor (Hou, Xue, and Zhang,
2015), and M -factor (Stambaugh and Yuan, 2016) alphas. When forming portfolios, we also impose the
restriction that lagged price must be greater than $5 (breakpoints are computed before imposing the
lagged price restriction). We also report the past 12-month portfolio returns. The sample period is from
July 1981 to June 2012.

Past 12-Month Returns Future 12-Month Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 25.66 27.82 24.68 -0.98 13.38 13.49 9.73 -3.64
(7.55) (7.23) (6.71) (-0.36) (4.77) (5.44) (2.99) (-2.80)

FF3F Alphas 23.13 24.30 21.93 -1.20 16.70 15.78 12.54 -4.16
(7.11) (5.87) (4.94) (-0.38) (3.72) (3.83) (2.51) (-2.48)

Carhart4F Alphas 24.26 25.25 24.10 -0.16 14.13 13.33 10.92 -3.21
(5.10) (4.97) (4.09) (-0.05) (3.68) (3.48) (2.49) (-1.80)

q-Factor Alphas 26.07 25.28 24.95 -1.12 13.09 13.10 10.68 -2.41
(6.31) (6.27) (4.98) (-0.31) (2.82) (2.76) (2.12) (-1.80)

M -Factor Alphas 27.37 28.79 26.15 -1.12 14.56 13.81 11.46 -3.11
(5.71) (5.08) (4.96) (-0.20) (3.03) (3.16) (2.89) (-2.65)

Future 24-Month Returns Future 36-Month Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 24.46 26.42 18.62 -5.84 37.83 39.62 29.24 -8.60
(5.15) (5.48) (3.53) (-2.66) (4.82) (5.38) (4.43) (-2.89)

FF3F Alphas 28.70 29.97 22.44 -6.27 43.26 44.36 31.96 -11.30
(4.59) (4.98) (3.44) (-2.64) (4.67) (5.84) (4.26) (-3.82)

Carhart4F Alphas 28.40 30.62 23.32 -5.09 39.53 42.09 31.13 -8.40
(4.59) (4.58) (3.47) (-1.75) (4.57) (5.41) (4.13) (-2.31)

q-Factor Alphas 28.15 30.37 22.88 -5.62 39.32 42.78 30.87 -8.45
(3.66) (3.86) (3.21) (-2.66) (3.05) (4.09) (3.73) (-2.43)

M -Factor Alphas 30.15 31.85 24.56 -5.31 39.18 44.04 30.69 -8.49
(3.88) (4.14) (3.73) (-2.03) (3.18) (4.62) (3.83) (-2.82)
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Table 6: R&D IQ Effect and Investor Sentiment

This table presents results from regressions of R&D IQ spread returns on different measures of investor
sentiment. SENT1 is the Baker and Wurgler (2006) investor sentiment index, which is constructed
as the first principal component of the six proxies of investor sentiment, including the close-end fund
discount, turnover, the number of IPOs, the average first-day returns, equity share, and the dividend
premium. SENT2 is the investor sentiment index, which removes business cycle variation from SENT1.
SENT1L (SENT2L) represents the first lag of SENT1 (SENT2). ∆SENT1 and ∆SENT2 (∆SENT1L
and ∆SENT2L) are the first difference of SENT1 and SENT2 (SENT1L and SENT2L), respectively.
R&D IQ spread returns are high-minus-low R&D IQ portfolio returns. The sample period is from July
1981 to June 2012.

Value-Weighted R&D IQ Spread
(1) (2) (3) (4) (5) (6) (7) (8)

SENT1 0.022
(0.14)

SENT2 -0.021
(-0.12)

∆SENT1 -0.356
(-0.42)

∆SENT2 -0.013
(-0.02)

SENT1L 0.037
(0.25)

SENT2L -0.020
(-0.12)

∆SENT1L -0.068
(-0.11)

∆SENT2L -0.022
(-0.04)

Constant -0.392 -0.378 -0.386 -0.385 -0.396 -0.379 -0.385 -0.385
(-3.79) (-3.44) (-4.06) (-4.05) (-3.85) (-3.50) (-4.04) (-4.05)

Adj R2 -0.003 -0.003 -0.002 -0.003 -0.002 -0.003 -0.003 -0.003
Equal-Weighted R&D IQ Spread

(1) (2) (3) (4) (5) (6) (7) (8)
SENT1 0.001

(0.00)
SENT2 -0.067

(-0.36)
∆SENT1 0.037

(0.04)
∆SENT2 0.338

(0.41)
SENT1L -0.001

(-0.01)
SENT2L -0.091

(-0.50)
∆SENT1L -0.116

(-0.16)
∆SENT2L -0.072

(-0.12)
Constant -0.483 -0.460 -0.483 -0.482 -0.482 -0.452 -0.483 -0.483

(-4.27) (-3.82) (-4.60) (-4.060) (-4.28) (-3.82) (-4.58) (-4.59)
Adj R2 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.003
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Table 7: Firm Characteristics and R&D IQ Effect

This table presents monthly portfolio returns (in %) based on double sorts on firm characteristics and
R&D IQ. At each month stocks with non-missing lagged firm characteristics and R&D IQ are firstly
sorted into three portfolios at 30%/40%/30% breakpoints based on each firm’s characteristics (firm size
in Panel A, firm age in Panel B, firm’s financial constraint in Panel C, and fundamental volatility in Panel
D) and each of these portfolios is then sorted into three sub-groups at 30%/40%/30% breakpoints based
on R&D IQ. Excess return is the difference between portfolio returns and the one-month Treasury bill
rate. Characteristic-adjusted returns are computed by adjusting returns using 125 (5× 5× 5) size/book-
to-market/momentum portfolios (Daniel et al., 1997), and industry-adjusted returns are computed by
adjusting returns using the Fama-French 17 industry portfolios (Fama and French, 1997). When forming
portfolios, we impose the restriction that lagged price must be greater than $5. The three-factor (Fama
and French, 1993), four-factor (Carhart, 1997), q-factor (Hou, Xue, and Zhang, 2015), and M -factor
(Stambaugh and Yuan, 2016) alphas are also reported. The sample period is from July 1981 to June
2012.

Panel A: Firm’s Size

Small Size Big Size
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.39 0.91 0.44 -0.96 1.28 1.22 1.00 -0.28
(4.34) (2.57) (1.05) (-2.91) (4.39) (4.75) (3.78) (-2.34)

Char-Adj Returns 0.11 -0.34 -0.89 -1.00 0.21 0.19 -0.11 -0.32
(0.56) (-1.55) (-2.84) (-3.02) (2.15) (2.21) (-1.11) (-2.57)

Ind-Adj Returns 0.47 -0.11 -0.58 -1.04 0.25 0.26 -0.06 -0.30
(1.65) (-0.49) (-1.72) (-3.03) (2.11) (2.28) (-0.51) (-2.58)

FF3F Alphas 0.50 -0.12 -0.51 -0.99 0.13 0.15 -0.10 -0.24
(2.24) (-0.57) (-1.57) (-3.02) (1.13) (1.31) (-0.80) (-1.94)

Carhart4F Alphas 0.54 -0.13 -0.56 -1.10 0.23 0.30 -0.02 -0.25
(2.27) (-0.59) (-1.71) (-3.23) (2.03) (2.49) (-0.18) (-1.96)

q-Factor Alphas 0.72 -0.13 -0.49 -1.21 0.08 0.23 -0.23 -0.30
(2.90) (-0.59) (-1.41) (-3.31) (0.58) (1.54) (-1.67) (-2.25)

M -Factor Alphas 0.50 -0.16 -0.56 -1.07 0.13 0.32 -0.13 -0.25
(1.99) (-0.67) (-1.72) (-2.82) (1.05) (2.18) (-0.95) (-1.88)

Panel B: Firm’s Age

Young Age Old Age
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.50 1.16 0.30 -1.20 1.07 1.14 1.09 0.01
(4.13) (3.60) (0.84) (-4.47) (3.82) (4.37) (3.49) (0.08)

Char-Adj Returns 0.41 0.12 -0.71 -1.12 0.14 0.14 0.06 -0.08
(2.46) (0.91) (-3.63) (-4.30) (1.11) (1.37) (0.36) (-0.44)

Ind-Adj Returns 0.55 0.16 -0.68 -1.23 0.15 0.23 0.02 -0.13
(2.94) (1.03) (-3.36) (-4.90) (1.03) (1.58) (0.12) (-0.74)

FF3F Alphas 0.42 0.11 -0.68 -1.10 -0.00 0.08 -0.00 0.00
(2.27) (0.79) (-3.29) (-3.98) (-0.03) (0.68) (-0.02) (0.01)

Carhart4F Alphas 0.43 0.24 -0.48 -0.91 0.07 0.16 0.04 -0.02
(2.22) (1.62) (-2.32) (-3.22) (0.47) (1.29) (0.23) (-0.13)

q-Factor Alphas 0.64 0.27 -0.39 -1.03 -0.19 -0.03 -0.19 0.00
(3.07) (1.46) (-1.68) (-2.98) (-1.00) (-0.19) (-0.92) (0.02)

M -Factor Alphas 0.39 0.40 -0.35 -0.75 -0.13 -0.02 -0.19 -0.06
(1.81) (2.39) (-1.61) (-2.31) (0.76) (-0.11) (-0.98) (-0.33)
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Panel C: Firm’s Financial Constraint

Low KZ Index High KZ Index
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.16 1.17 0.93 -0.23 1.28 1.32 0.86 -0.42
(2.94) (3.32) (2.92) (-0.87) (4.65) (4.88) (2.95) (-3.18)

Char-Adj Returns 0.10 0.04 -0.26 -0.37 0.17 0.25 -0.24 -0.41
(0.52) (0.18) (-1.38) (-1.47) (1.93) (2.74) (-2.13) (-3.02)

Ind-Adj Returns 0.35 0.22 -0.06 -0.41 0.29 0.31 -0.22 -0.51
(1.38) (0.96) (-0.29) (-1.53) (2.22) (2.33) (-1.78) (-3.83)

FF3F Alphas -0.12 0.01 -0.28 -0.16 0.23 0.28 -0.19 -0.43
(-0.53) (0.03) (-1.30) (-0.61) (2.14) (2.58) (-1.56) (-3.07)

Carhart4F Alphas -0.05 0.08 -0.15 -0.10 0.33 0.38 -0.13 -0.46
(-0.21) (0.39) (-0.75) (-0.34) (3.43) (3.34) (-1.04) (-3.27)

q-Factor Alphas 0.04 0.04 -0.17 -0.21 0.25 0.37 -0.23 -0.48
(0.15) (0.19) (-0.70) (-0.67) (2.12) (2.60) (-1.63) (-3.32)

M -Factor Alphas -0.06 0.02 -0.25 -0.19 0.20 0.38 -0.20 -0.39
(-0.20) (0.08) (-1.22) (-0.54) (2.02) (2.90) (-1.62) (-2.67)

Panel D: Firm’s Fundamental Volatility

Low Volatility High Volatility
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.33 1.29 1.05 -0.27 1.20 0.96 0.17 -1.03
(4.99) (5.31) (3.69) (-1.82) (3.25) (2.95) (0.47) (-3.91)

Char-Adj Returns 0.21 0.20 -0.01 -0.22 0.09 -0.04 -0.94 -1.03
(1.96) (2.08) (-0.06) (-1.48) (0.50) (-0.23) (-4.60) (-3.58)

Ind-Adj Returns 0.35 0.24 -0.02 -0.37 0.24 -0.037 -0.86 -1.10
(2.19) (1.83) (-0.17) (-2.41) (1.18) (-0.38) (-4.76) (-4.43)

FF3F Alphas 0.23 0.24 -0.02 -0.25 0.06 -0.13 -0.92 -0.98
(1.72) (2.11) (-0.12) (-1.64) (0.32) (-0.84) (-4.55) (-3.54)

Carhart4F Alphas 0.31 0.31 0.11 -0.20 0.18 -0.02 -0.85 -1.04
(2.50) (2.82) (0.67) (-1.27) (0.84) (-0.09) (-3.95) (-3.42)

q-Factor Alphas 0.06 0.15 -0.02 -0.08 0.36 0.15 -0.85 -1.21
(0.40) (1.08) (-0.11) (-0.47) (1.60) (0.81) (-3.84) (-3.74)

M -Factor Alphas 0.10 0.22 0.16 0.06 0.01 0.14 -0.99 -1.00
(0.77) (1.85) (0.94) (0.27) (1.60) (0.81) (-3.84) (-2.82)
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Table 8: The Factor-Mimicking Portfolios

At the end of June of year t from 1981 to 2012, we firstly sort firms into two size portfolios (small “S”
and big “B”) based on NYSE median size breakpoint at the end of June of year t, and then sort each size
portfolio into three R&D IQ portfolios (low “L”, middle “M”, and high “H”) based on the 30th and 70th
percentiles of R&D IQ in year t − 1. As a result, there are in total six size-IQ portfolios, namely, S/L,
S/M, S/H, B/L, B/M, and B/H. We hold these six portfolios over the next 12 months and compute their
monthly value-weighted returns. The factor-mimicking portfolio for R&D IQ (IQF) is constructed as
follows: (S/L + B/L)/2 - (S/H + B/H)/2. Size is the market equity at the end of June of year t. We also
construct four innovation-related factors based on R&D intensity (R&D expenditures scaled by sales),
significant R&D growth (RDG), innovative efficiency (IE), and the number of patents scaled by market
equity, respectively. MKT is the return on the value-weighted NYSE, Amex, and Nasdaq portfolio minus
the one-month Treasury bill rate. SMB and HML are the returns on two factor-mimicking portfolios
associated with the size effect and the book-to-market effect, respectively. MOM denotes the momentum
factor. Panel A reports the mean, standard deviation, and ex post Sharpe ratio (SR) for these factors.
Panel B reports the Pearson correlation coefficients among these factors. Panel C report the portfolio
weights and monthly Sharpe ratios of ex post tangency portfolios based on investing in subsets of these
factor-mimicking portfolios. All returns and standard deviations are in percentage.

Panel A: Summary Statistics

IQF MKT SMB HML MOM RDF RDGF IEF NPF
Mean 0.30 0.60 0.10 0.36 0.60 0.06 0.12 0.06 0.03
Stdev 2.83 4.54 3.09 3.04 4.57 3.68 3.18 3.10 2.67

SR 0.11 0.13 0.03 0.12 0.13 0.02 0.04 0.02 0.01
Panel B: Correlation Matrix

IQF MKT SMB HML MOM RDF RDGF IEF NPF
IQF 1.00

MKT 0.03 1.00
SMB 0.22 0.23 1.00
HML -0.13 -0.33 -0.34 1.00
MOM 0.19 -0.18 0.05 -0.13 1.00
RDF 0.27 0.28 0.38 -0.44 0.11 1.00

RDGF 0.16 0.14 0.06 -0.19 0.12 0.38 1.00
IEF 0.23 0.15 0.26 -0.29 -0.09 0.40 0.08 1.00
NPF 0.09 0.14 0.16 -0.22 -0.14 0.34 -0.07 0.84 1.00

Panel C: Constructions of Tangency Portfolio

Portfolio Weights Sharpe Ratio
MKT SMB HML IQF MOM RDF RDGF IEF NPF Mean Stdev SR

1. 1.00 0.60 4.54 0.13
2. 0.97 0.03 0.58 4.42 0.13
3. 0.33 0.15 0.52 0.40 1.79 0.22
4. 0.26 0.25 0.07 0.42 0.39 1.54 0.25
5. 0.15 0.24 0.05 0.37 0.19 0.44 1.44 0.31
6. 0.25 0.25 0.06 0.42 0.02 0.38 1.52 0.25
7. 0.24 0.24 0.07 0.40 0.05 0.37 1.47 0.25
8. 0.25 0.24 0.06 0.41 0.04 0.38 1.50 0.25
9. 0.25 0.24 0.06 0.41 0.03 0.38 1.50 0.25
10. 0.12 0.22 0.04 0.35 0.18 -0.03 0.03 0.04 0.05 0.41 1.31 0.31

47



1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013
0.3

0.5

0.7

0.9
R&D IQ Periodic Cross-Sectional Persistence

Time Series Mean = 0.57 (t = 32.9)

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013
-20

-10

0

10

20

30
R&D IQ Spread Returns

Equal-Weighted

Value-Weighted

Figure 1: R&D IQ Persistence and Returns on Spread Portfolios

The upper panel presents the one-year apart periodic cross-sectional persistence of R&D IQ. Its time-

series average is also computed. The lower panel presents the time series of annual equal-weighted and

value-weighted excess returns on short position of the high-minus-low hedge portfolio over the period

from July 1981 to July 2012. When computing portfolio excess returns, each month stocks with non-

missing lagged IQ are sorted into three groups based on the 30%/40%/30% breakpoints of R&D IQ, and

these portfolios are then held over the next 12 months.
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Figure 2: Annual Returns on the IQ Factor and the Market Factor

This figure plots returns (on a per annum basis) for the IQF factor and the market factor from 1981

to 2012. MKT is the return on the value-weighted NYSE, Amex, and Nasdaq portfolio minus the one-

month Treasury bill rate. At the end of June of year t from 1981 to 2012, we firstly sort firms into two

size portfolios (small “S” and big “B”) based on NYSE median size breakpoint at the end of June of

year t, and then sort each size portfolio into three R&D IQ portfolios (low “L”, middle “M”, and high

“H”) based on the 30th and 70th percentiles of R&D IQ in year t− 1. As a result, there are in total six

size-IQ portfolios, namely, S/L, S/M, S/H, B/L, B/M, and B/H. We hold these six portfolios over the

next 12 months and compute their monthly value-weighted returns in excess of the one-month Treasury

bill rates. The factor-mimicking portfolio for R&D IQ (IQF) is constructed as follows: (S/L + B/L)/2

- (S/H + B/H)/2. The gray areas represent NBER recessions.
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